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Abstract—Gene expression microarray datasets often consist of a limited number of samples with a large number of expression
measurements, usually on the order of thousands of genes. Therefore, dimensionality reduction is a core process prior to any
classification task. In this work, the iterative feature perturbation method (IFP), an embedded gene selector, is introduced and applied
to 4 cancer microarray datasets: colon cancer (cancer vs. normal), leukemia (subtype classification), Moffitt colon cancer (prognosis
predictor) and lung cancer (prognosis predictor). We compared results obtained by IFP to those of SVM-RFE and the t test using a
linear support vector machine as the classifier in all cases. The IFP approach resulted in comparable or superior accuracy as compared
to SVM-RFE in 3 of the 4 datasets. Surprisingly, the simple t test feature ranking typically produced classifiers with the highest accuracy
across the 4 datasets. This finding led to additional experiments to incorporate an upfront preselection of the top 200 genes based
on their p values on each dataset. Then we applied IFP and SVM-RFE on the resulting smaller datasets. The accuracy results after
preselection showed up to 3% performance improvement for both IFP and SVM-RFE across the 4 datasets; they got closer to the t test
accuracy and outperformed it at some points. An AUC analysis and a statistical analysis (using the Friedman/Holm test) of the accuracy
curves under both scenarios corroborated the superiority of the t test on experiments without gene preselection, and the performance
improvement of IFP and SVM-RFE with gene preselection. Also, we investigated the percentage of intersection between the gene sets
selected by the 3 methods across the 4 datasets, and found that it was low even at points where any 2 methods reached very similar
accuracies. For example on the colon cancer dataset using the entire set of features, both IFP and SVM-RFE showed around 82%
accuracy in the range of 70 through 200 features, while their feature intersection in this range was 60%. We observed similar patterns

across our 4 datasets and concluded that the same or similar accuracies can be obtained with different sets of genes.

Index Terms—Microarray data, classification, support vector machines, embedded methods, feature ranking, feature selection

1 INTRODUCTION

ENE expression microarray datasets tend to be
Gsmall in sample size due to the cost associated
with the assays. Typically, there are many more gene
expression measurements (e.g. 54,000 transcripts) avail-
able than samples. Hence, the selection of a subset
of genes/features is crucial before building a classifier.
Identifying a small number of genes that are good
predictors is important from a biological standpoint,
as expression experiments are typically performed to
generate hypotheses for further experimentation in the
lab. For clinical applications, identifying a small number
of genes that are important in predicting patient survival
time or diagnosing cancer can speed the translation of
expression signatures into cost-effective tests for clinical
practice. From a machine learning viewpoint, too many
features/genes in a dataset can negatively influence the
classification performance as they increase the possibility
of overfitting. Therefore, the feature selection process
plays a vital role for the building of a successful classifier
from microarray datasets.
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An initial version of the feature perturbation method
(FP) was introduced in [1]. In this paper, we intro-
duce the iterative feature perturbation method (IFP),
which overcomes FP esentially by including a self tune
mechanism to determine the amount of noise needed to
perturb the features to find the most sensitive ones. IFP
is an embedded selector with the capability of using any
classification algorithm as the base classifier.

Our IFP implementation used a support vector machine
(SVM) to allow for performance comparison with SVM-
RFE [2]. IFP is more general than SVM-RFE which is
limited to the use of SVM as the base classifier. On the
other hand, the t test feature ranking which is based on
the p values of the features, was compared, in terms
of SVM accuracy to IFP and SVM-RFE. The t test has
been previously used to select genes [3], [4], but we
expected the more sophisticated approaches to result
in higher accuracy classifiers. We experimented with 4
microarray datasets: colon cancer (cancer vs. normal),
leukemia (subtype classification), Moffitt colon cancer
(prognosis predictor) and lung cancer (prognosis predic-
tor). The results of the experiments indicated that IFP
results in accuracy comparable and even superior for
some sets of genes to that of SVM-RFE, on 3 out of 4
datasets. Surprisingly, the results showed that the t test
based feature selector finds better sets of genes than the
more sophisticated IFP and SVM-RFE selection methods.
The t test feature selector resulted in the highest SVM
classifier accuracy for the largest number of gene sets



(gene sets consist of different numbers of genes) across
all 4 datasets. This finding led to additional experiments
to incorporate a preselection of the top 200 genes based
on their p values on each dataset, and then apply IFP
and SVM-RFE on the resulting smaller datasets.

The accuracy results after preselection showed up to 3%
performance improvement for both IFP and SVM-RFE
across the 4 datasets; they got closer to the t test accuracy
and outperformed it at some points. An AUC analysis of
the accuracy curves under both scenarios, without and
with gene preselection, corroborated the superiority of
the t test on experiments without gene preselection, and
the performance improvement of IFP and SVM-RFE with
gene preselection. The statistical significance analysis
using the Friedman/Holm test with a 5% threshold
performed on the top 50 features under both scenarios,
indicated that without gene preselection the t test is
better in accuracy than both IFP and SVM-REFE across our
4 datasets mostly throughout their entire set of genes.
With gene preselection, the statistical analysis showed
the significant performance improvement of both IFP
and SVM-RFE as an effect of the preselection. We also
looked at the statistical significant difference between
the two approaches using both IFP and SVM-RFE. The
results indicated that the preselection of features was
statistically significant better for some feature sets on the
colon cancer, leukemia, and lung cancer datasets.

Also, we investigated the percentage of intersection be-
tween the gene sets selected by the 3 methods across
the 4 datasets, and found that it was low even at points
where any 2 methods reached very similar accuracies.
For example on the colon cancer dataset using the
entire set of features, both IFP and SVM-RFE showed
around 82% accuracy in the range of 70 through 200
genes/features, while their intersection in this range was
60%. We observed similar patterns across our 4 datasets.

2 RELATED METHODS

Filters, wrappers and embedded methods are three ap-
proaches for feature selection [5]. Filters do not incorpo-
rate the learning algorithm in the feature subset search,
basically they select features based on a measure/score
individually obtained on each feature (univariate case).
Low-scored features are then removed. With wrappers,
the feature subset search incorporates the learning al-
gorithm to asses diverse feature subsets, the subset
resulting with the highest assessment gets chosen [6].
Embedded methods incorporate the learning algorithm
in the feature subset search [7], so the search is guided
by the learning algorithm.

Embedded feature selection methods used in the mi-
croarray domain have applied learning algorithms such
as random forests, SVM and logistic regression (the latter
two use the weights as a selection criterion) [5].

A method using SVM is the recursive feature elimination
for support vector machines (SVM-RFE) introduced in
[2]. It is an embedded selector that follows a backward

elimination approach. It ranks the features according to
their weights, which are calculated from the support
vectors. The features to be removed next are those with
the lowest weights. SVM-RFE works only with support
vector machines.

A hybrid huberized support vector machine (HHSVM)
was introduced in [8] for both classification and gene
selection. HHSVM uses a combination of the huberized
hinge loss function to measure misclassification and
the elastic-net penalty which allows for automatic vari-
able selection and grouping effect (groups of correlated
variables get selected/removed together). The authors
show results of the HHSVM on the leukemia dataset
[9] compared to those of SVM-RFE. In the context of
the original split of the dataset, 38 training samples and
34 testing samples, SVM-RFE got 2/34 errors with 128
genes, and 0/38 errors with 128 genes in a cross vali-
dation environment. Similarly, HHSVM got 0/34 errors
with 84 genes in the original split and 0/38 errors in
the cross validation context. Also, they showed results
for experiments conducted under a randomly-splitting
approach, where they combined all the original train-
ing/testing samples altogether and made random splits
into 38 training and 34 testing samples; they repeated
this process 50 times and reported average of results.
SVM-RFE showed an average testing error of 2.25% with
256 genes on average; while HHSVM showed an average
testing error of 1.67% with 87.9 genes on average.

In [10], the authors showed results of HHSVM on the
colon cancer dataset [11] compared to those of SVM-
RFE. The dataset was randomly split for 100 times into
42 training samples (27 cancer samples and 15 normal
tissues) and 20 testing samples (13 cancer samples and 7
normal tissues). HHSVM resulted in 12.69% of test error
with 94.5 genes, while SVM-RFE showed a test error of
17.10% with 64 genes.

3 METHOD: ITERATIVE FEATURE PERTURBA-
TION

The iterative feature perturbation method (IFP) inherited
some concepts from its ancestor FP, such as the backward
elimination approach and the definition of relevant/non-
relevant features. Both methods are embedded feature
selectors. As such, the base learning algorithm is in-
volved in the process of determining which features are
going to be removed in the next step. Both algorithms
start with the entire set of features in the dataset; at
every iteration the size of the feature set is reduced by
removing the least important features. The criterion to
determine which features are the least important relies
on the impact on the classification performance that
each feature has when perturbed. That is, each feature
is perturbed by adding noise to it. If as a result, it
leads to a big change in the classification performance,
then the feature is considered relevant. Correspondingly,
non-relevant features will cause little or no impact to
the classification performance. Non-relevant features are



then removed so that only relevant features remain.

In [12] we concluded that different amounts of noise
were needed to adequately perturb feature sets of dif-
ferent sizes. The new IFP algorithm is described in
Fig. 1. Fig. 1a describes the main iterative part of IFP,
and Fig. 1b describes the binary search called from
Fig. 1a for calculation of the noise level, perturbation and
ranking of features. IFP receives as input the original
dataset which constitutes the training set X and a K
value indicating the number of features to be removed
in the current iteration. At the beginning the subset of
current surviving features S is set to the initial set of
features. The method iterates through stages until no
features remain; then a ranked feature list is output. For
performance evaluation purposes, a classification model
can be created based on a selected feature set from the
ranked list, and its accuracy can be calculated on the test
set.

In the iterative process, the first stage is to train a classi-
fication model on X with all existing surviving features
S. Any classification learning algorithm could be used
to create the classification model. For the experiments
conducted in this research, a support vector machine
(SVM) was used as the base classifier. For performance
reasons, after training the classification model, the train-
ing set was reduced to the subset of samples selected as
the support vectors. These samples carry the essential
information needed for the classification problem; the
rest of the samples are irrelevant [13], [14]. In the second
stage the training accuracy for the reduced samples
set was calculated. The third stage perturbs and ranks
all features in S from lowest to most relevant. This
phase is performed using a binary search process, which
identifies an appropriate amount of noise to be injected
in each feature, and identifies exactly the K least relevant
features desired for removal. The ranking for a feature
is determined by the change in accuracy observed on
the training samples before and after adding noise. Non-
relevant features were defined as either those causing
no change in accuracy or a 0 — 10% range of change.
The binary search process returns a ranking of features
which is examined for ties in the fourth stage of IFP.
Two features are tied when they cause the same accuracy
change. If no tie is found, then the top K features in
the ranking, which are the K least relevant features of
the current set S, are removed. In case of a tie, all tied
features are ranked based on a tie-breaking criterion,
and only the top feature is removed. Since SVM is the
base classifier used, the weight of each feature [15] was
chosen as the tie-breaking criterion, which is calculated
following (1):

!
i=1

where [ is the number of support vectors in the SVM
model, y; is the label/class (+1/-1) for the ith support
vector, «; is a positive real value given by the SVM
model to the i*" support vector indicating its contribu-

tion to the margin, and z; is the gene/feature value in
the i'" support vector. Given that microarray datasets
usually have many less examples than gene expressions,
the feature removal process would be computationally
expensive if features were removed one at a time. More-
over, only a small subset of features is expected to be
relevant for classification. This is the reason that an
adaptive feature elimination strategy was applied in our
experiments.

The strategy consists of determining the number of
features to be removed in relation to the current number
of surviving features. Specifically, half the surviving fea-
tures were removed at a time rather than just one when
the number of existing features was larger than a given
threshold; thereafter one-at-a-time feature removal was
initiated. After removing the K non-relevant features, the
final feature ranking F needed to be updated.

An iterative binary search was implemented to find
the amount of noise to be added to each feature when
perturbing. Noise is generated following (2):

Noise; = (¢ * sd;) 2)

where sd; is the standard deviation of the feature being
perturbed across all examples in the training set, and c is
a dynamic factor indicating the noise level being injected
in the perturbation process. It is dynamic in the sense
that it varies in magnitude for different sizes of the set
of surviving features S. That is, the ¢ factor for a set S
with 500 features may be different than that for a set S
with 10 features. The c factor impacts the final amount
of noise injected into each feature. On the other hand,
when a large amount of noise is applied to the set S, it
may result in no features within the 0 — 10% accuracy
change. The opposite is also true. When a small amount
of noise is applied, it may result in getting more features
within the 0 — 10% range than needed. The more noise
applied to a feature, the bigger the accuracy change it
will cause. Specifically, the binary search looks for a ¢
factor such that when applied in (2), it finds exactly the
K least important features to remove.

Binary search is an algorithm that locates its target value
in the middle of a sorted list. In our implementation,
the ¢ factor can take a minimum value of 1 x 107¢ and
can be as large as needed. This fact allows the search
space to be sorted in ascending order. The initial value
of the maximum boundary of the search space is set to a
very large maximum value. As the search advances, the
search space will be reduced to either its left half or right
half depending on the need to increment or decrement
the number of features within the 0 — 10% accuracy
change respectively. Eventually, the c factor being sought
will be the value in the midpoint of the search space.
In Fig. 1b, line 1 sets adjusting_variable to the lowest value
that the ¢ factor can take. This variable is used when
reducing the search space to its left or right half in lines
16 and 18. The minimum value that adjusting_variable is
assigned allows for a further scan of the search space.
Lines 2 and 3 set the minimum and maximun boundary



values of the search space respectively. The perturbation
of features is coded in lines 6 through 12. The amount of
noise that is injected to each feature in line 7 is calculated
with (2). In line 10, Acc; corresponds to the accuracy
obtained after perturbing feature 7 of the set S. In line 11,
the ranking criterion is calculated; it is the difference of
the training accuracy and the accuracy calculated in line
10. In line 13, all features in S are ranked based on the
ranking criterion; that is, the resulting ranking will go
from features causing the least change in accuracy down
to features changing accuracy the most. In line 14, the
features with 0—10% of accuracy change are counted. In
lines 15-16, when there are no features within this range
of accuracy change or they total less than the K features
needed, then the search space is reduced to the left half,
meaning that the ¢ factor and thus the noise level has
to be decreased in order to get more features within the
desired range of accuracy change. On the other hand,
in lines 17-18, when there are more features within the
0—10% of accuracy change than needed, then the search
space is reduced to the right half, meaning that the c
factor and thus the noise level have to be increased in
order to get fewer features within the desired range of
accuracy change. Finally, in line 20, when exactly the K
features needed are found, the ranking of all features is
returned by the binary search.

There are a few differences between the new IFP method
and the old FP. First, a self-tuning mechanism to deter-
mine the amount of noise to be applied in the perturba-
tion phase is now incorporated. Second, the randomness
in the calculation of the amount of noise was removed.
Third, after training a classifier the training set is reduced
to the subset of support vectors.

4 EXPERIMENTAL STUDIES
4.1 Data and preprocessing

Experiments were performed on 4 affymetrix-platform 2-
class gene expression microarray datasets. All 4 datasets
underwent a preprocessing phase as is typical for this
type of data. Data preparation allows for the learning
algorithm to easily access the information carried by the
datasets [16].

o The Colon cancer dataset is a well-studied publicly
available microarray benchmark [11]. It is made up
of 62 samples including 22 normal and 40 colon
cancer tissues. There are 2000 gene expression val-
ues for each sample. For data preprocessing, a logs-
transformation was applied to it to normalize the
data.

o The leukemia dataset is another publicly available
dataset [9]. It contains information on human acute
myeloid (AML) and acute lymphoblastic leukemia
(ALL) with 25 and 47 samples respectively. There
are 7129 gene-expression values for each sample.
The dataset was explored and a large number of
negative gene-expression values were found. For
data preprocessing, all negative gene values was set

to 1 and a logs-transformation was applied to the
entire dataset, resulting in a large number of zero
values. A set of 2689 genes were preselected under
the criteria of genes having < 25% of zero values
and variance >= 1.

o The Moffitt colon cancer dataset used in this paper
is a superset of the set described in [3]. It con-
tains information on 122 samples, 84 labeled “good
prognosis” representing patients with survival time
>= 36 months, and 38 samples labeled “poor prog-
nosis” representing patients with survival time <
36 months. The original dataset has 54675 genes.
For data preprocessing, a logs-transformation was
done and a preselection of genes using the criteria
of genes having variance >= 0.5 resulted in a subset
of 2619 genes.

o The lung cancer dataset used in our experiments
is the same as was used in [17]. It is composed of
410 samples, 271 labeled “good prognosis”, and 139
labeled “poor prognosis” relative to their survival
time as described for the Moffitt colon dataset. The
original dataset has 22282 genes, 68 control genes
were left out, and a subset of 22214 genes remained.
The dataset was explored and a number of genes
with values close to zero were found. For data pre-
processing, all gene-expression values < 2 were set
to 2, so they would not result in negative numbers
in the logs-transformation. A subset of 2428 genes
were preselected under the criteria of genes having
< 25% of gene values = 1 and variance >= 1.

Finally, gene expressions in all 4 datasets were scaled to
a 0 - 1 range.

4.2 Parameters for the SVM

As stated in the description of IFP in section 3, the IFP
method could be used with any classification algorithm
as the base classifier. In our implementation, we used
SVM as the base classifier to be able to compare our
results against those of SVM-RFE. The SVM used is a
modified version of 1ibSVM [18]. A linear kernel was
used with parameter C' =1 to reduce training time and
the probability of overfitting. The optimization algorithm
used was the sequential minimal optimization (SMO).

4.3 Performance measure

All results reported in Section 4.4 are expressed in
weighted accuracy rather than total accuracy. Weighted
accuracy was preferred as the classifier performance
measure due to the unequal distribution of the two
classes in all four datasets. In situations like these,
weighted accuracy gives a better performance estimate
of the learning algorithm [19]. Weighted accuracy for 2-
class datasets is defined in Eq. (3),

tp n tn
tp+ fn  fp+in

Weighted Accuracy = < > /2 (3)



Input: A set X of training samples and a
K wvalue indicating the number of features
to be removed.

Output: F, the final feature ranking.

S : Subset of surviving features
1. S « all features
2. while S # 0 do
3.  Train a classifier on X with features S
4. Calculate the training set accuracy Acc
5. Perturb and rank features by binary search
6. Determine if there are tied features
7. if no tied features then
8 S« S —{top K features}
9

. else
10. Rank tied features by weight
11. S «— S — {top feature}
12.  end if

13.  Update feature ranking F
14. end while
15. return R

(@)

Input: The current set X of training samples
with S surviving features, the K value and
the training accuracy Acc of current set X.

Output: FR, ranking of current features in S

1. adjusting_variable «+ 1 x 107°

2. min < 1 x 107°

3. max < large maximum value

4. while min <= max do

5. c_factor « midpoint <+ (min + mazx)/2

6. for all features i in S do {Perturbing features}

7. add noise to i across all examples

8. get a new perturbed dataset X'

9. predict classes for X'

10. calculate accuracy Acc;

11. calculate ranking criterion r; = abs(Acc — Acce;)

12.  end for

13.  FR <« ranking of all features in S by r;

14.  count «— features with 0 — 10% ranking criterion

5. if count = 0 or count < K then
{c_factor needs to be decreased}

16. max < midpoint — adjusting_variable

17.  else if count > K then
{c_factor needs to be increased}

18. min «— midpoint 4+ adjusting_variable

19. else {right c_factor found}

20. return FR

21.  end if

22. end while

(0)

Fig. 1. (a) is the main loop of the iterative feature perturbation algorithm and (b) the binary search called from (a) for
calculation of noise level/c_factor, perturbation and ranking of features.

TABLE 1
Confusion matrix
Predicted Predicted
Cancer Normal Tissue
Actual True Positive | False Negative
Cancer (TP) (FN)
Actual False Positive | True Negative
Normal tissue (FP) (TN)

where tp, fp, tn, and fn respectively are the number of
true positives, false positives, true negatives and false
negatives in a confusion matrix, as shown in Table 1.

4.4 Experiments and results

The adaptive feature elimination strategy described in
section 3 was applied in the feature removal process
for all experiments conducted that started with the
entire set of features in the dataset. Specifically, 50%
of the existing features were removed across iterations
until a threshold of 25% was reached, except for
the colon cancer dataset whose threshold was set to
10%. All experiments were assessed via a 10-fold cross

validation process, and each cross-validation experiment
was performed 5 times with different random seeds.
The average weighted accuracy over the five runs is
reported.

Three methods of feature ranking were assessed with
all four datasets: IFP, SVM-RFE and the t test. The t
test ranks the features according to their p values. The
most relevant feature has the lowest p value and the
least relevant feature has the highest p value. Results on
the four datasets are shown in Fig. 2. The graph of the
colon cancer dataset in Fig. 2a shows that IFP resulted
in more accurate classifiers than SVM-RFE throughout
most of the range of 6 to 139 features (genes), with
a bigger difference in favor of IFP in the ranges 81
through 95, 53 through 68 features and 6 through 42
features. SVM-RFE resulted in more accurate classifier
than IFP throughout most of the range of 140 to 2000
features. The p value based feature ranking resulted in
the highest accuracy classifier for nearly the entire set
of features on this dataset.

The leukemia dataset, graph in Fig. 2b shows that
the t test was more accurate than IFP and SVM-RFE
throughout the range of 1000 to 2000 features. IFP



resulted in a more accurate classifier than both SVM-
RFE and the t test throughout the range of 100 to
250 features. The three accuracies were comparable
and we would say there was a tie in the range of 57
through 100 features. However there were differences
in accuracies in the range of 1 through 56 features. IFP
alternated with SVM-RFE in accuracy spikes in this
range although IFP overall attained higher accuracies.
On the other hand, the t test feature ranking resulted in
the highest accuracy classifier throughout the range of
3 to 24 features, and it was the least accurate classifier
in the range of 31 to 56 features.

The graph of the Moffitt colon dataset in Fig. 2c, shows
comparable accuracies between the three methods
throughout the range of 600 to 2619 features. IFP spiked
at 500 features and thereafter dropped off to the lowest
accuracy of the three methods, mostly throughout the
range of 33 to 250 features. The t test clearly resulted
in a more accurate classifier throughout the range of
116 to 250 features, whereas SVM-RFE and the t test
showed similar accuracies in the range of 80 through 115
features. SVM-RFE was better than the t test throughout
most of the range of 48 to 79 features, and the t test
was better than SVM-RFE in the range of 33 through
46 features. Last, there were interesting accuracies in
the top 33 features. SVM-RFE and IFP showed similar
accuracies in this range except that IFP accuracy spiked
around 25 features. On the other hand, the t test showed
its lowest accuracy in this range at 24 features.

The graph of the lung cancer dataset in Fig. 2d,
shows similar accuracies between IFP and SVM-RFE
throughout the range of 1000 to 2428 features. The t test
resulted in the highest accuracy classifier throughout
nearly the entire range of 14 through 250 features,
except that IFP reached accuracies closer to those of the
t test in the range of 43 through 92 features. SVM-RFE
and IFP reached very comparable accuracies throughout
the range of 180 to 250 features, whereas IFP clearly
outperformed SVM-RFE in the range of 33 through
154 features. From 33 downward they showed similar
accuracies. Finally, the t test resulted in the lowest
accuracy classifier across the top 9 features.
Surprisingly, the t test ranking based on the p value
of the features resulted in selecting subsets of features
which, in terms of SVM classifier accuracy, tended
to outperform both IFP and SVM-RFE across all four
datasets. On the other hand, IFP showed accuracy
comparable or superior to that of SVM-RFE on the
colon, leukemia and lung datasets. IFP contributed to
a less accurate classifier on the Moffitt colon dataset,
except at the end when less than 33 features remained
where IFP accuracy was comparable or superior
to that of SVM-RFE at some points. The t test based
classifier accuracy was very low in this range of features.

4.4.1 Intersection across entire set of features

After we observed the results in Fig. 2, a question arose
about the degree of similarity of the sets of features at
chosen points on the ranked lists resulting from each
of the three methods IFP, SVM-RFE and the t test.
An analysis of the intersection across the entire set of
features on each dataset was done. It consisted of looking
at the percentage of intersection of features between any
two methods. Given that there were five runs of each
method, we ended up with five percentages to average
over. Results on the colon cancer dataset are illustrated
in Fig. 3, on the leukemia dataset in Fig. 4, on the Moffitt
colon dataset in Fig. 5, and on the lung cancer dataset
in Fig. 6.

Fig. 3a shows the intersection between IFP and SVM-
RFE on the colon cancer dataset. Interestingly, in Fig. 2a
accuracies of IFP and SVM-RFE were close to each other
at a number of points in the range of 70 through 2000
features, whereas their intersection did not show this
same pattern. At 2000 features their intersection started
at 100%, and steadily went down as the number of
features decreased until around 200 features were left.
Thereafter the percentage of intersection was maintained
at around 60% all the way until 70 features remained,
and their intersection noticeably kept decreasing until 1
feature was left. This fact suggests that different sets of
genes can result in similar accuracies.

Fig. 3b, Fig. 3d and Fig. 3f shows intersections of IFP, t
test and SVM-RFE respectively with themselves. These
three figures show that the t test was more stable than
both IFP and SVM-REFE in selecting features.

Fig. 3c shows the intersection between the t test and IFP
features which stayed overall very low. It was 100% at
2000 features, and pictorially followed a close-to-linear
behavior as the number of features decreased until 250
or less features were left. Thereafter, the intersection was
maintained in the range of 15% to 20%. Fig. 3e shows
similar behavior on the intersection of the t test and
SVM-RFE, except that the percentage of intersection was
maintained at around 20% from when 250 features were
left.

Fig. 4a shows the intersection between IFP and SVM-RFE
on the leukemia dataset. Interestingly, the percentage of
features in the intersection between these two methods
steadily decreased with the number of features. Also,
Fig. 4c and Fig. 4e show the percentage of intersection
between the t test and IFP and between the t test and
SVM-RFE respectively. The number of features in the
intersection of both IFP and SVM-RFE with the t test
was low compared to that in the intersection between
IFP and SVM-RFE, a result which indicates that the t
test selected very different sets of features. However, in
terms of accuracies, in Fig. 2b, the three methods did
not differ in the same proportion. Particularly, the t test
and SVM-RFE showed similar accuracies in the range
of 57 through 2689 features. These results highlight the
idea that different sets of features (genes) can lead to



—IFP —— RFE — TTEST
90

85 4
804

75 4

70 4

Accuracy %

65

60 4

55 1

50
) “
'1»@ &&&@6\@\'\6\@\"6x§\@€y\¢\@ P AP0
Number of Features

()

—1IFP ——RFE ——TTEST

60

Accuracy %

43
mb\q PO RN RGN R IR R R I I
Number of Features

(c)

—IFP - RFE —— TTEST

Accuracy %

86 1

84
%@9 P FFEPEPREFLIFTEECE T e PP e
Number of features

(b)

Accuracy %

45
PILPSLLPEPHPHS S0 A0
Number of Features

(d)

Fig. 2. Comparison of resulting average weighted accuracy of feature ranking given by methods IFP, RFE and t test
on (a) colon, (b) leukemia, (c) moffitt colon and (d) lung cancer datasets.

very comparable if not identical accuracies. On the other
hand, Fig. 4b, Fig. 4d, and Fig. 4f show, as in the case of
the colon cancer dataset in Fig. 3, that the t test was more
stable in selecting features across the entire set than IFP
and SVM-RFE.

Fig. 5a shows the intersection of features between IFP
and RFE on the Moffitt colon cancer dataset. Clearly, it
shows the same trend as with the colon and leukemia
datasets; that is, the percentage of intersection decreases
with the number of features. For this dataset we wanted
to focus on the ranges of features where any two meth-
ods had similar accuracies. Fig. 2c shows that both the t
test and SVM-RFE selection methods resulted in similar
accuracies of around 54% in the range of 80 through
114 features; however, their intersection in this range, as
shown in Fig. 5e, was around 23%. This means that these
methods showed similar base classifier accuracies with
different sets of features. The same situation occurred
with the top 9 features, where the three methods reached
accuracies close to each other, while their percentages of
intersections were different. For the t test with IFP as
well as for the t test with SVM-RFE the intersection was
at less than 20% (2 features) and for IFP with SVM-RFE
it was at less than 25%.

Last, the results obtained for lung cancer dataset were
not much different from those for the colon cancer,
leukemia and Moffitt colon cancer datasets, in the sense

that any two methods could reach same or similar
accuracies with different sets of features. That was the
case for IFP and SVM-RFE whose accuracies shown in
Fig. 2d were at 57% in the range of 178 to 225 features,
while their intersection shown in Fig. 6a was around 54%
in the same range. Another case is the analysis of IFP
with the t test, whose accuracies were around 57% in
the range of 57 to 71 features, while their intersection
shown in Fig. 6¢c was as low as 6.6% in the same range.
The experiments conducted on four microarray datasets,
starting with their entire sets of features, have consis-
tently shown that the feature ranking based on p values
resulted in sets of features with very competitive SVM
classifier accuracy. Accuracies of SVM classifiers with
features chosen by IFP, SVM-RFE and the t test were
compared against each other, resulting the t test in either
reaching or outperforming the other two in an important
range of features.

On the other hand, in [20] it was noted that p values were
useful for prioritizing genes for further investigation.
Also, in [5] it was advised to pre-reduce the search
space upfront via a univariate filter, and secondly apply
wrapper or embedded methods. With these arguments
in mind, we decided to conduct a series of additional
experiments on our four datasets, aiming to see the effect
of doing a gene preselection based on their p values, and
then examine the performance of IFP and SVM-RFE on
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Fig. 3. Intersection across the entire set of features of (a) IFP vs. RFE, (b) IFP vs. IFP, (c) t test vs. IFP, (d) t test vs. t
test, (e) t test vs. RFE and (f) RFE vs. RFE on colon cancer dataset.

the resulting dataset comprised of the preselected genes.

4.4.2 Intersection across a subset of features (genes)

The experiments presented in this section were per-
formed on the previously discussed four datasets. They
consisted of first preselecting the top 200 genes based
on their p values, second, forming a new dataset with
this subset, and third, applying IFP and SVM-RFE on
it. The gene preselection process was done within a
10-fold cross validation context, each performed five
times. The average weighted accuracy over the five
runs are reported in Fig. 7. As a reference to results
shown in Fig. 2 and for a clearer view of the effect of

preselecting the features on each dataset, the t test line
of each chart in Fig. 2 was included on its corresponding
chart in Fig. 7, as they follow the same aforementioned
context. For colon cancer dataset, Fig. 7a shows that with
gene preselection both IFP and SVM-RFE reached higher
accuracies than those when no preselection was done.
Now their accuracies fall on or above 85% for nearly
the entire set of 200 genes, in contrast to the below 85%
accuracy before. SVM-RFE gained more benefits since it
now outperformed the t test in the top 22 features, which
did not happen in Fig. 2a.

Fig. 7b shows that for the leukemia dataset the gene
preselection process benefited both IFP and SVM-RFE.
Their accuracies were higher than when no gene pres-



election was done; they are now at around 95%. These
two methods resulted in more accurate classifiers than
the t test in the range of 22 through 200 features on this
dataset.

The gene preselection based on p values was benefi-
cial for both IFP and SVM-RFE on the Moffitt colon
cancer dataset as Fig. 7c shows. As a positive effect
of the preselection, these two methods reached higher
accuracies. The IFP average accuracy over the top 200
features without gene preselection was 53.04% while
with preselection it went up to 56.27%. The SVM-RFE
average accuracy over the top 200 features without gene
preselection was 54.43% while with preselection it went
up to 56.36%. It is notable in Fig. 7c that both IFP and
SVM-RFE reached similar accuracies to those of the t
test in the range of 124 to 200 features, while the t test
in Fig. 2c, was more accurate in the same range. Also,
IFP and SVM-REFE resulted in more accurate classifiers
than the t test in the range of 1 to 123 features in Fig. 7c,
which did not occurr in Fig. 2c.

Last, Fig. 7d shows once more that both IFP and SVM-
RFE gained benefits from gene preselection on the lung
cancer dataset. According to the results shown in Fig. 2d,
the t test was more accurate than both IFP and SVM-
RFE most of the time on the top 200 features, while
with gene preselection in Fig. 7d, these two methods
improved their accuracies in this range to the point of
getting accuracies around or higher than that of the t
test.

Overall, results on the four datasets showed that both
methods IFP and SVM-RFE improved their accuracies
when the dataset underwent a gene preselection process
prior to running the learning algorithm under study. In
our experiments, the p value criterion was used as the
filtering technique. Our results reinforce that it is a useful
criterion when preselecting genes for further analysis, as
stated by Quackenbush in [20].

In terms of analysis of the intersection across the subset
of 200 genes, we proceeded in the same way as described
in section 4.4.1. Based on the results obtained in the
intersection of genes selected by the three methods,
across the entire set of genes of each dataset, the idea
now was to focus on points where any two methods
reached similar or the same accuracies and look at their
intersections of genes at those points. This procedure
would help us clarify whether or not it is possible to
reach the same accuracy with different sets of features
(genes).

Results of percentages of intersection on the colon cancer
dataset are shown in Fig. 8, on the leukemia dataset in
Fig. 9, on the Moffitt colon cancer dataset in Fig. 10, and
on the lung cancer dataset in Fig. 11.

Fig. 8a, Fig. 8c, and Fig. 8e show the average intersection
between IFP with SVM-RFE, the t test with IFP, and
the t test with SVM-RFE respectively across the 200
genes. In the three cases the amount of intersection
decreased with the number of features. The intersection
with the t test was lower as fewer features remained.

The intersection between the t test and IFP was at less
than 50% when 100 features remained and reached its
lowest rate of 16.57% at 7 features. The intersection
between the t test and SVM-RFE was somewhat similar
to that with IFP. These results led us to observe once
more that the t test results in selecting very different
sets of genes. However, according to accuracies indicated
in Fig. 7a, there were points where the three methods
reached very similar accuracies, such as at 97 genes
where IFP reached 85.57%, SVM-RFE 85.52%, and the t
test 85.98%. At this point the intersection with the t test
was less than 50% and between IFP and SVM-RFE was
83.96%. Again, it was clear that it is possible to reach
similar accuracies with different sets of genes. On the
other hand, the intersection of IFP with itself in Fig. 8b
resulted in around 59.80% overlap on average, that of
SVM-REFE with itself in Fig. 8f resulted in 58.72% overlap
on average, and the intersection of the t test with itself
in Fig. 8d resulted in 77.28% overlap on average. These
numbers indicated that the t test was more stable in
selecting genes than IFP and SVM-RFE were.

Fig. 9 shows the average intersections between IFP, SVM-
RFE, and the t test on the leukemia dataset. The shape of
each of the curves resembles those of the colon dataset
in Fig. 8. Similar conclusions were drawn from Fig. 9c
and Fig. 9e, as the t test ended up with different sets
of selected genes, since the average intersection between
the t test with IFP as well as the average intersection
between the t test with SVM-RFE, was lower most of the
time across the 200 genes than that of IFP with SVM-RFE.
Now, the three methods resulted in similar accuracies at
21 genes in Fig. 7b: IFP 93.05%, SVM-RFE 93.37%, and
the t test 93.66%, while their average intersections at the
same point were, between the t test and IFP 29.43%,
betwen the t test and SVM-RFE 30.10%, and between
IFP and SVM-RFE 42.57%. Again, as in the colon cancer
dataset, results on the leukemia dataset showed that
it is possible to reach the same or similar accuracies
with different sets of genes. On the other hand, the
intersection of IFP with itself in Fig. 9b was 66.84%
overlap on average, that of SVM-RFE with itself in Fig. 9¢
was 67.67% overlap on average, and the intersection of
the t test with itself in Fig. 9d resulted in 85.82% overlap
on average. Again, these numbers indicated that the t
test was more stable in selecting genes than IFP and
SVM-RFE.

Fig. 10 shows the average intersections between IFP,
SVM-RFE and the t test on the Moffitt colon cancer
dataset. The shape of each of the curves resembles those
of the colon cancer and leukemia datasets in Fig. 8 and
Fig. 9 respectively, except that the t test in Fig. 10d
did not maintain the same percentage of intersection
across the 200 genes as it did on the colon cancer
and leukemia datasets. As for the intersections of IFP
and SVM-RFE with the t test in Fig. 10c and Fig. 10e
respectively, they showed again that the t test selected
very different sets of genes. Also, the three methods
reached similar accuracies at 141 features in Fig. 7c: IFP



56.70%, SVM-RFE 56.35%, and t test 56.27%. However
their intersections, even though they were high at this
point, they were not close in the same proportion among
them. Average intersections between the t test with IFP
reached 70.74%, the t test with SVM-RFE 71.22%, and IFP
with SVM-RFE 91.72%. Once more, the observation was
that with different sets of genes, the resulting accuracies
can be alike.

Finally, Fig. 11 shows the average intersections between
IFP, SVM-RFE, and the t test on the lung cancer dataset.
The shape of each of the curves led us to note that
similar conclusions can be drawn regarding reaching
alike accuracies with different sets of genes. Even though
for this dataset, the accuracies of the three methods
shown in Fig. 7d are closer to each other across the 200
genes, still their average intersections showed similar
behavior to those of the colon cancer, leukemia and
Moffitt colon cancer datasets.

4.5 AUC analysis

The accuracy results between methods for all datasets
were additionally analyzed using the area under the
curve (AUC) [12]. AUC was calculated for all of the
accuracy curves in Fig. 2 and Fig. 7 using the trapezoidal
method in the student version of the DADISP software
[21]. Fig. 2 shows accuracy results on our 4 datasets
using the entire set of features. Fig. 7 shows accuracy
results using the top 200 preselected features with base
on their p values.

4.5.1 Across the entire set of features

Results are shown in Table 2. Table 3a shows the AUC
of each method across the 4 datasets. The t test had
the greatest AUC on the colon cancer and the leukemia
datasets. While SVM-RFE was highest on the Moffitt
colon and the lung cancer datasets. The comparison
of any 2 methods indicated in Table 3b that IFP had
greater AUC than that of SVM-RFE only on the leukemia
dataset. Table 3c shows that the t test had greater AUC
than that of IFP on the colon, Moffitt colon, and the lung
cancer datasets. Table 3d shows that the t test reached
greater AUC than that of SVM-RFE on the colon cancer
and the leukemia datasets. Interestingly, the differences
in AUC on the datasets where the t test outperformed
IFP or SVM-RFE are mostly larger than those where
these methods outperformed the t test. Also, differences
in AUC between IFP and SVM-RFE are mostly smaller in
magnitude than those when these 2 methods compared
against the t test.

4.5.2 Across the top 200 subset of features

Results are shown in Table 3. Table 4a shows the AUC of
each method across the 4 datasets using only the top 200
features. The t test had the greatest AUC on the colon
and the lung cancer datasets. While IFP was highest on
the leukemia dataset. SMV-RFE had the greatest AUC
on the Moffitt colon cancer dataset. The comparison of
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any 2 methods indicated in Table 4b that IFP now had
greater AUC than SVM-RFE on the colon cancer, the
leukemia and the lung cancer datasets. Table 4c shows
that IFP had a bigger AUC than that of the t test on the
leukemia and the Moffitt colon cancer datasets. Table 4d
shows that SVM-RFE had greater AUC than the t test
on the leukemia and the Moffitt colon cancer datasets.
Interestingly, the differences in AUC on the datasets
where either IFP or SVM-RFE outperformed the t test
were comparable to those where the t test outperformed
the two former. This is true except on the lung cancer
dataset where the t test based feature selector resulted
in better classifier than both IFP and SVM-RFE with a
very minimum difference in AUC. On the other hand,
differences in AUC between IFP and SVM-RFE were
very small as compared to those between these two
methods and the t test. Our perception at this point
was that the preselection of genes helped both IFP and
SVM-RFE improve their performance. Considering AUC
values only, we observed that accuracies of IFP and
SVM-REFE got closer to and in some cases exceeded those
of the t test as effect of gene preselection.

4.6 Statistical significance analysis

Results described in previous sections were further
analyzed for a statistical significance of the differences
in accuracies between methods. We used the Friedman-
Holm test which has been discussed in [22], [23], [24],
[25]. The Friedman test is a non-parametric test that
allows the comparison of two or more classifiers. It
ranks the methods being compared ranging from 1-3
in this work, 1 and 3 being the highest and the lowest
ranks respectively. Ties of 1 are each given 1.5. The
null hypothesis states there are no differences between
the methods. When the null hypothesis is rejected, a
post-hoc test follows to determine the method with
better results. In this work we used the Holm procedure
as a post-hoc test. It consists of sequentially testing
hypotheses starting with the most significant p value.
When a hypothesis is rejected the Holm procedure
moves on to the next p value and continues until no
null hypothesis can be rejected.

We applied the Friedman-Holm test to the top 50
accuracies resulting from two scenarios: a) starting
with the entire set of features in the dataset (Fig. 2),
and b) starting with a preselected set of n features, n
being the number of features with p values <= 0.01.
The latter criterion implied that each dataset had a
different-in-size initial set of features. The colon cancer
dataset started with 201 features, the leukemia dataset
with 437 features, the Moffitt colon dataset with 50
features, and the lung cancer dataset with 375 features.
Our sample size was 10, that is, for each dataset we
conducted the 10-fold cross validation experiment 10
times with different seeds each.

Throughout the following description of the statistical
analysis, the terms different and better are used to
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TABLE 2
AUC analysis of accuracy curves across all 4 datasets using the entire set of features. (a) AUC (a bold entry
represents the highest AUC). Comparison between methods in terms of AUC difference (noted in the column of the
method with highest AUC): (b) IFP vs. RFE, (c) IFP vs. t test, and (d) SVM-RFE vs. t test

[ Dataset/Method ] 1FP [ SYM-RFE | ttest |
Colon 164654.88 | 165656.48 | 168526.20
Leukemia 255409.53 | 254867.40 | 256530.08
Moffitt Colon 138889.91 | 139046.06 | 138300.87
Lung 134020.46 | 134691.81 134664.98

(@)

[ Dataset/Method [[ TFP [ SVM-RFE ] [ TFP | ttest | [ SUM-RFE | ttest |
Colon 1001.6 3871.32 2869.72
Leukemia 542.13 1120.08 1662.68
Moffitt colon 156.15 589.04 745.19
Lung 671.35 644.52 26.83

(b) (c) (d)
TABLE 3

AUC analysis of accuracy curves across all 4 datasets using the top 200 features. (a) AUC (a bold entry represents
the highest AUC). Comparison between methods in terms of AUC difference (noted in the column of the method with

highest AUC): (b) IFP vs. SVM-RFE, (c) IFP vs. t test, and (d) SVM-RFE vs. t test

[ Dataset/Method [[ TFP [ SVM-RFE [ ttest |
Colon 16962.56 16958.48 17252.42
Leukemia 18940.77 18877.87 18636.43
Moffitt Colon 11200.31 11219.15 10961.38
Lung 11598.31 11593.80 11600.65

(a)

[ Dataset/Method [[ TFP | SVM-RFE | [ TFP | ttest | [ SUM-RFE | ttest |
Colon 4.08 289.86 293.94
Leukemia 62.9 304.34 241.44
Moffitt colon 18.84 238.93 257.77
Lung 4.51 2.34 6.85

(b) (c) (d)

mean statistically significant different and statistically
significant better, respectively. We considered statistical
significant results at 95% confidence level (p values <=
0.05).

4.6.1 Starting with the entire set of features

Table 4 shows the results for the colon cancer dataset.
Each table entry shows the method that was found better
(winner) between the methods at the number of features
indicated by the column title. A blank table entry means
that no method was found significantly different.

When compared to IFP the t test was better for 35 feature
sets, no difference was found for 14 feature sets and IFP
was found better for only 1 feature set. When compared
to SVM-RFE the t test was better for 38 feature sets, and
no difference was found for 12 feature sets. The com-
parison between IFP and SVM-RFE indicated that both
methods were nearly the same except at 1 feature where
IFP was a better classifier. Table 5 shows the results for
the leukemia dataset. The subtable corresponding to the
range of 25-50 features was omitted since no method was
found different throughout this range. When compared
to IFP the t test was better for 11 feature sets, and no
method was found different for 39 feature sets. When
compared to SVM-RFE the t test was better for 9 feature
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TABLE 4
Statistical analysis of results on the colon cancer dataset between the methods IFP (I), RFE (R) and the t test (T)
across features (a) 50 to 31, (b) 30 to 16, and (c) 15 to 1 with no previous preselection of features.

l

[[50 [ 49 [ 48 [ 47 [ 46 [ 45 | 44 [ 43 [ 42 [ 41 [ 40 | 39 | 38 | 37 [ 36 [ 35 [ 34 [ 33 | 32 [ 31 |

t test vs IFP T T T T T T T T

T

T T T T T T T T T T T

t test vs RFE T T T T T T T T

T

T T T T T T T T T T T

IFP vs RFE

(@)

l

[30 [29 [ 28 [ 27 [ 26 [ 25 | 24 [ 23 [ 22 [ 21 [ 20 [ 19 [ 18 [ 17 [ 16 |

t test vs IFP T T T T T T

T T | T T T | T| T T

t test vs RFE T T T T T T

T T | T T T | T | T T | T

IFP vs RFE

(b)

l

(5[4 [13[12]11[10]9]8[7][6][5]4[3][2]1]

t test vs IFP

T I

t test vs RFE T T

T

IFP vs RFE

I

sets, and no method was found different for 41 feature
sets. No difference was found between IFP and SVM-
RFE.

The results for the Moffitt colon cancer dataset showed
that no difference was found between IFP and the t test
for 49 feature sets. IFP was better for 1 feature set (12
features). When compared to SVM-RFE the t test was
better for 1 feature set (39 features). No difference was
found for 48 feature sets. SVM-RFE was found better
for 1 feature set (12 features). No difference was found
between IFP and SVM-RFE.

The results for the lung cancer dataset showed that no
difference was found between IFP and the t test for 44
feature sets. IFP was better for 3 feature sets (7, 6, and
5 features). The t test was better for 3 feature sets (42,
34, and 23 features). When compared to SVM-RFE no
difference was found for 44 feature sets. SVM-RFE was
better for 3 feature sets (7, 6, and 5 features). The t test
was better for 3 feature sets (42, 37, 34 features). No
difference was found between IFP and SVM-RFE.
Interestingly, the statistical analysis showed that the
more complicated feature selection algorithms IFP and
SVM-RFE did not generally result in better classifiers
using a support vector machine as the base classifier on
microarray data.

4.6.2 Starting with a preselected set of n features

This section describes the statistical analysis performed
on the results derived from experiments under the
aforementioned scenario 2. That is, prior to the
application of IFP and SVM-RFE each dataset underwent
a preselection of the top n features, where n was the
number of features with p values <= .01.

Table 6 shows the results on the colon cancer dataset.
When compared to IFP the t test was better on 20
feature sets (15 less than without preselection). No

()

difference was found in 29 feature sets (15 more than
without preselection). IFP was better in 1 feature set.
When compared to SVM-RFE the t test was found better
on 15 feature sets (23 less than without preselection). No
difference was found in 35 feature sets (23 more than
without preselection). IFP was better than SVM-RFE in
1 feature set (6 features).

Results on this dataset indicated that there was a
change in the performance of IFP and SVM-RFE by
doing upfront a preselection of genes, as follows. The
number of feature sets where the t test was found better
than IFP and SVM-RFE decreased after preselecting.
Also, the number of feature sets where no difference was
found between the methods being compared increased
after preselecting. So, it was not the case that IFP and
SVM-RFE were found better than the t test; however,
these methods got enough performance improvement
after preselecting, that they showed no difference with
the t test in ga reater number of feature sets.

Table 7 shows the results on the leukemia dataset. No
difference was found between IFP and the t test on 34
feature sets (5 less than without preselection). Of these
5 feature sets, IFP was better on 3 (3 more than without
preselection). The t test was now better on 13 feature
sets (2 more than without preselection). When compared
to SVM-REFE the t test was found better for 11 feature
sets and no difference was found for 39 feature sets.
The comparison between IFP and SVM-RFE showed
no difference on 46 feature sets (4 less than without
preselection). SVM-RFE was found better than IFP on 4
feature sets (4 more than without preselection).

The results for the Moffitt colon cancer dataset indicated
that after preselection no difference was found between
IFP and the t test throughout all 50 features. Without
preselection IFP had resulted better than the t test on 1
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TABLE 5
Statistical analysis of results on the leukemia dataset between the methods IFP (I), RFE (R) and the t test (T) across
features (a) 24 to 11, and (b) 10 to 1 with no previous preselection of features.

| [ 24 [23 [ 22 [21 [ 20 [ 19 [ 18 [17 [ 16 [ 15 | 14 [ 13 [ 12 | 11 |

t test vs IFP T T T T T T T T T
t test vs RFE T T T T
IFP vs RFE
(a)
l [1I0[9[8[7[6[5[4[3[2]1]
t test vs IFP T|T
t test vs RFE T T|T T|T
IFP vs RFE
(b)
TABLE 6

Statistical analysis of results on the colon cancer dataset between the methods IFP (1), RFE (R) and the t test (T)
across features (a) 50 to 31, (b) 30 to 16, and (c) 15 to 1 with previous preselection of n features (those with p values
<=0.01).

| [[50 [ 49 | 48 [ 47 | 46 [ 45 | 44 [ 43 [ 42 [ 41 [ 40 [ 39 | 38 [ 37 [ 36 | 35 | 34 [ 33 [ 32 | 31 |

t test vs IFP T T T T T T T T

T

T T T T T T

t test vs RFE T T T T T T T T

T

T T T T T T

IFP vs RFE

(@)

[ [30 [29 [ 28 [ 27 [ 26 [ 25 | 24 [ 23 [ 22 [ 21 [ 20 [ 19 [ 18 [ 17 [ 16 |

t test vs IFP T T T T T
t test vs RFE
IFP vs RFE R

(b)

[ [5[14[3[12 11 [10]9[8]7][6][5][4][3]2]1]

t test vs IFP

I

t test vs RFE

IFP vs RFE

feature set. On the other hand, no difference was found
between the t test and SVM-RFE on 49 feature sets
(1 more than without preselection). That 1 feature set
benefited SVM-RFE which improved its performance to
reach that of the t test. SVM-RFE was still found better
than the t test on 1 feature set. The comparison between
IFP and SVM-RFE showed no difference on 47 feature
sets (3 less than without preselection). SVM-RFE was
found better than IFP on 3 feature sets (3 more than
without preselection).

Table 8 shows the results on the lung cancer dataset.
The subtable corresponding to the range of 34-50 fea-
tures was omitted since no method was found different
throughout this range. When compared to the t test
IFP was better on 5 feature sets (2 more than without
preselection). The t test was not found better at all (it
used to be better at 3 feature sets without preselection).
No difference was found in 45 feature sets (1 more

()

than without preselection). When compared to SVM-
RFE the t test was better on 4 feature sets (1 more
than without preselection). SVM-RFE was better only
on 1 feature set (2 less than without preselection). No
difference was found on 45 feature sets (1 more than
without preselection). IFP was better than SVM-RFE on
14 feature sets (14 more than without preselection).
Interestingly, our results showed that the preselection of
genes prior to the application of IFP or SVM-RFE mostly
makes a positive impact on the performance of these
feature selection methods.

4.6.3 Preselection vs. no preselection of IFP and SVM-
RFE.

Previous sections described the statistical significance
analysis performed on the top 50 accuracies obtained for
each of the methods on each dataset. First, we analyzed
the scenario without doing preselection prior to the ap-
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TABLE 7
Statistical analysis of results on the leukemia dataset between the methods IFP (1), RFE (R) and the t test (T) across
features (a) 50 to 31, (b) 30 to 16, and (c) 15 to 1 with previous preselection of n features (those with p values
<=0.01).

l

[[50 [ 49 | 48 [ 47 | 46 [ 45 | 44 [ 43 [ 42 [ 41 [ 40 [ 39 [ 38 [ 37 [ 36 | 35 | 34 | 33 [ 32 | 31 |

t test vs IFP 1 I 1

t test vs RFE

FP vs RFE

(@)

l

[30 [29 [ 28 [ 27 [ 26 [ 25 | 24 [ 23 [ 22 [ 21 [ 20 [ 19 [ 18 [ 17 [ 16 |

t test vs IFP T T T T T T
t test vs RFE T T T T
FP vs RFE R
(b)
1514|1312 |11 109 |8 |7 |6 |54 |3 ][2]1
t test vs IFP T T T T|T|T T
t test vs RFE T T T T | T T|T
FP vs RFE R|R|R
(c)
TABLE 8

Statistical analysis of results on the lung dataset between the methods IFP (l), RFE (R) and the t test (T) across
features (a) 33 to 18, (b) 17 to 1 with previous preselection of n features (those with p values <= 0.01).

l

[33 [ 32 31 [30 |29 [ 28] 27 [ 26 [ 25 | 24 [ 23 [22 [ 21 [ 20 ] 19 18 |

t test vs IFP

t test vs RFE T

T

IFP vs RFE

I

(@)

l

[17 [ 16 [15 [14 [ 13 [12 [ 11 [10][9[8]7]6]

t test vs IFP

I

t test vs RFE

IFP vs RFE

I

plication of IFP and SVM-RFE. Second, we analyzed the
scenario where we did a preselection of features/genes
prior to the application of these two methods. In this sec-
tion we statistically describe how each method compared
to itself on its two versions: with no preselection and
with preselection of genes. The analysis was performed
on each dataset. The analysis showed at each feature set
which version was statistically significant better or if no
statistical significant difference was found between the
two versions.

Table 9 shows the results on the colon cancer dataset. On
IFP, doing preselection was found better on 26 feature
sets. No difference between the two versions was found
on 24 feature sets. On SVM-RFE, doing preselection was
found better on 23 feature sets. No difference was found
on 27 feature sets.

Results on the leukemia dataset showed that for IFP,
doing preselection was found better on 4 feature sets
(45, 46, 47, and 48 features). No difference was found

(b)

between the two versions on 46 feature sets. On SVM-
RFE, doing preselection was found better in 1 feature set
(21 features). No difference was found in 49 feature sets.
Results on the Moffitt colon cancer dataset showed that
for IFP, not doing preselection was found better on 3
feature sets (9, 13, 14 features). No difference was found
between the two versions on 47 feature sets. On SVM-
RFE, no difference at all was found across the 50 feature
sets.

Table 10 shows the results on the lung cancer dataset.
The subtable corresponding to the range 50-33 was
omitted since no difference difference between the two
scenarios was found throughout this range. On IFP,
doing preselection was found better on 13 feature sets.
No difference between the two versions was found on
37 feature sets. On SVM-RFE, not doing preselection was
found better on 1 feature set. No difference was found
on 49 feature sets.

Our results showed that the preselection of features
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TABLE 9
Statistical comparison between doing preselection (P) and not doing preselection (NP) with the methods IFP and
SVM-RFE across features (a) 50 to 31, (b) 30 to 16, and (c) 15 to 1 on the colon cancer dataset.

| [[50 [ 49 [ 48 [ 47 [ 46 [ 45 | 44 [ 43 [ 42 [ 41 [ 40 [ 39 | 38 | 37 [ 36 [ 35 [ 34 [ 33 [ 32 [ 31 |

IFP P P P P P P P P

P P P P

RFE

P P P P P

(a)
[ [30 [29 [ 28 [ 27 [ 26 [ 25 [ 24 [ 23 [ 22 [ 21 [ 20 [ 19 [ 18 [ 17 [ 16 |
IFP [ P[P [P [P | P[P [P[P P[P
REE [P [P | P | P | P[P [P P| P[P P[P |DP|P

(b)

[ [5[14[3[12 11 [10]9[8][7]6]5]4[3][2]1]

IFP P

RFE P P P

P

()

made a statistically significant difference on some feature
sets on the colon cancer, leukemia and lung cancer
datasets.

5 CONCLUSIONS

The IFP algorithm was introduced. It includes a self-
tuning mechanism, via binary search, to determine
the amount of noise needed to perturb any number
of features (genes). We compared the performance of
three feature selection methods: IFP, SVM-RFE and the
t test, in terms of average SVM classifier accuracy. Four
microarray datasets were preprocessed and used in
our experiments: colon cancer, leukemia, Moffitt colon
cancer and lung cancer datasets. Overall, IFP resulted
in a classifier comparable or superior in accuracy to
SVM-REFE on the colon, leukemia and lung datasets. IFP
resulted in a less accurate classifier on the Moffitt colon
dataset.

Surprisingly, the t test feature ranking, which is based
on the p values of the genes, turned out to be the best
gene selector explored. It found better sets of genes than
the more complicated IFP and SVM-RFE did, in the
sense that the genes selected by the t test led to SVM
accuracies higher than those of IFP and SVM-RFE, in
many gene subsets across all 4 datasets. This suggests
that perhaps the more complex algorithms for feature
selection increase the risk of overfitting for such small
sample problems.

Based on the good performance of the t test as a
gene selector, we investigated the effect of doing a
preselection of genes/features across our 4 datasets
before the application of IFP and SVM-RFE. We used
the p values of each gene as our filter criterion and
analyzed the accuracy results statistically using the
Friedman/Holm test and using the AUC criterion.
Both scenarios of experiments were analyzed, with and
without gene preselection. Our results confirmed the

superiority of the t test on experiments without gene
preselection as well as the performance improvement
of IFP and SVM-RFE on experiments where gene
preselection with the t test was incorporated.

We also looked at the similarity of the sets of genes
selected by each of the methods, with particular
emphasis on points where any two methods reached
alike accuracies. Our findings indicate that similar
accuracies can be reached with different sets of genes.
While the t test can be an accurate technique for feature
selection, it is limited to two-class problems. However,
the use of ANOVA could provide a similar method in
the case of 3 or more classes.
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Fig. 4. Intersection across the entire set of features of (a) IFP vs. RFE, (b) IFP vs. IFP, (c) t test vs. IFP, (d) t test vs. t
test, (e) t test vs. RFE and (f) RFE vs. RFE on leukemia dataset.



19

100 100
%0 - 90 4
80 1 20 4
70 A 70 4
B &
§ 601 e
8 50 A S 50
3 | ]
k] 40 £ 40
30 4 30 4
20 A 20 4
10 A 104
0 0
DD PP P b Pdd PP P D O DD B bbb PP DD DD PP DD D D
W&@q},@\q@{\\bé\u@\mxx\qq%« [SICSEDC SN WQ@@@\Q\%(\@\%\&@@Q@Q%’\ P b pb A AP
Number of features Number of features
(@) (b)
100 100
90 - 90 4
80 1 80 4
70 - . 70 4
B &
ECS 3 o0
g 5 3 50
E 40 4 E 40 A
30 4 30 4
20 A 20 4
10 A \ 104
0 0
DD b DD PP DA DD DD P D DADADD D I PP HEPD PP PP AR FTHR DA G D PP D P
W&@n}f\?@@’\“\“’\”’\”\“)@\\\“qcb'\b”’““ﬁ'\'\ A8 DT AT PTG 9 17 A7 67 57 8 a7 AP N
Number of features Number of features
() (d)
100 100
90 90
80 1 50 4
70 - g
= = 70
FRCE : o
I J 3
g 50 % 50
3
2 404 £ 404
= &
30 4 30 4
20 4 ﬁ‘_\\‘ 20 4
10 A 104
0 0
O O DD b P b P bbb PP D PP PaDdAdD D DB PP P D PP PP D
A @A OIS 97 67 A7 7 67 50 07 A7 N I SRR I S i
Number of features Number of features

(e) (f)

Fig. 5. Intersection across the entire set of features of (a) IFP vs. RFE, (b) IFP vs. IFP, (c) t test vs. IFP, (d) t test vs. t
test, (e) t test vs. RFE and (f) RFE vs. RFE on Moffitt colon cancer dataset.
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Fig. 6. Intersection across the entire set of features of (a) IFP vs. RFE, (b) IFP vs. IFP, (c) t test vs. IFP, (d) t test vs. t
test, (e) t test vs. RFE and (f) RFE vs. RFE on lung cancer dataset.
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Fig. 10. Intersection across the top 200 subset of features of (a) IFP vs. RFE, (b) IFP vs. IFP, (c) t test vs. IFP, (d) t
test vs. t test, (e) t test vs. RFE and (f) RFE vs. RFE on Moffitt colon cancer dataset.
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Fig. 11. Intersection across the top 200 subset of features of (a) IFP vs. RFE, (b) IFP vs. IFP, (c) t test vs. IFP, (d) t
test vs. t test, (e) t test vs. RFE and (f) RFE vs. RFE on lung cancer dataset.



