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Abstract

Ensembles of classifiers offer promise in increasing overall classification accuracy.
Combining multiple classifiers, bagging, and boosting have been utilized to improve
the accuracy of classification over a single classifier learned on the entire data. The
availability of extremely large datasets has opened avenues for application of distributed
and/or parallel learning to efficiently handle very large datasets. In this paper, we
look at distributed learning by training classifiers on either random disjoint subsets or
subsets created by a clustering algorithm. We examine a random partitioning method
to create disjoint subsets and propose a more intelligent way of partitioning into disjoint
subsets using clustering. We observe that the intelligent method of partioning generally
performs better than random paritioning for our datasets. The reduced complexity
associated with the technique of producing random disjoint partitions is attractive for
creating classifiers on extremely large datasets. A significant gain in accuracy may be

obtained by applying bagging to each of the disjoint subsets, creating multiple diverse



classifiers. The significance of our finding is that a partition strategy on small/moderate
sized datasets when combined with bagging can yield better performance than applying
a single learner using entire dataset. Similar results may be expected for larger data
sets, which suggests a parallel, practical, minimal time approach to learning a classifier

from large training datasets.

1 Introduction

Dataset sizes are continually increasing as more and more information is stored electronically.
Machine learning techniques are being utilized to learn models over increasingly large feature
and example spaces. Efficiently learning from these large datasets is difficult, as datasets
can not always be completely loaded into a computer’s memory. Reducing training set sizes
to the size of available memory or less is a practical approach in machine learning. An
attractive option for learning from large datasets is distributed learning: data and learning
are distributed across different processors (and computers). The approach discussed here is
to learn an ensemble of individual classifiers, with each learner creating it’s own classifier
from a subset of the total dataset.

Disjoint partitioning of a training set is a simple, potentially useful approach in dis-
tributed learning. Bagging [5] is a technique that uses repeated random samples of the
dataset, thus the sum of cardinalities of subsets is greater than the total size of the initial
dataset. Disjoint partitioning can potentially require less processing, since the total amount
of training data is not increased. A key issue in partitioning the dataset is the computa-
tional effort required. We examine both a simple random partition of the dataset and a
more intelligent, and more computationally demanding, clustering method. In either case,
disjoint partitioning should lend itself well to distributed learning. Every example from the
original dataset will be represented in some subset. In addition, individual learners will be
presented different views of the dataset, a feature considered useful in combining of classifiers
[11, 14, 6, 4, 10, 15].

Distributed learning involves such issues as data presentation to individual learners and
the combination of the classification output of all members of the ensemble. In this paper, we
examine the ensemble of classifiers approach in learning classifiers from datasets. Specifically,
our proposed method of learning involves partitioning a dataset into disjoint subsets. A
classifier is then learned or built for each subset. We examine both a random partitioning
method and a more intelligent partitioning method using clustering. With the addition of
the bagging technique [5] applied to subsets contained in partitions, we show that disjoint
dataset partitioning can actually yield better classifier performance than learning one model
over the entire dataset.



2 Background

Machine learning approaches have been generally studied in the context of modest-sized
datasets. Larger-sized datasets can show new weaknesses or peculiarities of the learner. In
addition, machine learning on large datasets is approaching the stumbling block inherent
to most artificial intelligence: scalability. By partitioning the training data and allowing
multiple classifiers to be learned independently (and possibly in parallel) we retain some of
the characteristics of earlier machine learning work. The added difficulties in distributed
learning, partitioning the data (e.g. disjoint or sampled) and a method of combining the
knowledge learned in each individual classifier (e.g. majority voting or weighted voting)
must be addressed.

In [4, 10], it was demonstrated that datasets too large to be processed on a single pro-
cessor can be efficiently handled in a distributed fashion. The resulting accuracy with dis-
tributed learning was essentially the same as the sequential model on the entire dataset,
especially with large datasets [10]. Chan and Stolfo [6, 7] proposed a comparison of arbiter
and combiner strategies by applying a learning algorithm to disjoint subsets of data. Their
experiments showed that the arbiter strategy sustains the accuracy compared to the classi-
fier learned on the entire data set. The combiner strategy experienced a drop in accuracy
with the increase in the number of subsets, which can be attributed to the lack of enough
information content from the small subsets, however in a few cases an improvement in the
accuracy was seen.

The machine learning work most related to our intelligent approach of partitioning data
is the hierarchical mixture of experts approach used in neural networks [8, 13]. In this
approach, radial basis functions or neural networks are used to segment the dataset and
classifiers are built on individual segments. Classification is accomplished by first routing
the test example to the appropriate expert. This expert was trained on similar data and is
used to classify the given example. We use a similar approach by clustering, which partitions
the data into clusters of related data. Since, we group examples without respect to class
using an unsupervised learning method, our “expert” learners are required to discriminate
among several classes within their regions of expertise. Additionally, we wish to use a less
computationally demanding approach to partition the dataset.

Clustering is a method of grouping like data. Rather than randomly choose partition
elements, this approach attempts to choose “similar” elements for a partition. We use a fuzzy
c-means (FCM) clustering algorithm for partitioning [3]. A c-means clustering algorithm
uses ¢ randomly initialized cluster centroids. When using FCM, each element of the dataset
is assigned membership to each cluster, based on the distance between the example and
the cluster centroid. Then, the cluster centroids are recomputed as essentially the weighted
average of all examples in the dataset, where the weighting is proportional to the membership
of the example to the given cluster. The euclidean distance in s-dimensional feature space
is often used as the distance metric. Degree of membership in a cluster is represented as a
real number between 0 and 1, such that the sum of all membership values for an example
sums to 1. For more details on fuzzy clustering, please refer to [3].

Bagging, or bootstrap aggregation, is a method of randomly sampling (with replacement)
subsets of the dataset and learning a model/classifier on each subset independently [5].



Therefore, we consider it as another approach to partitioning a dataset. Note, it does not
create disjoint partitions. Bagging has been shown to often improve classifier performance
vs. learning a classifier over the entire dataset directly [5, 16, 1, 9]. As stated earlier, we
wish to use the body of machine learning developed for moderate-sized datasets. Thus,
bagging can be employed on each subset in a disjoint partition of the data. We would expect
the bagged ensemble of classifiers for a subset to improve classification performance over an
individual classifier.

This paper introduces two key points. First, we find that intelligently partitioning the
dataset can yield better performance than random partitioning, which is not surprising.
We also find that while learning classifiers on disjoint subsets of data is no better than
building a single classifier using the entire dataset, the use of bagging on these subsets can
actually improve classification accuracy over the use of a single classifier built on all the data.
In distributed learning environments, we seek a solution that does not require a classifier
to be created from the entire dataset, only from “appropriately” chosen subsets. Thus,
we believe this approach is an attractive solution to increasingly large machine learning
problems. The next section describes in detail the approach used for both random and
intelligent partitioning. Experimental results on a set of common machine learning datasets
are then presented to demonstrate the approach.

3 Method

We describe in detail below each of the methods used to partition a dataset into subsets from
which an ensemble of classifiers can be built. Two different methods of random partitioning
were considered, as was an intelligent approach of partitioning using clustering. Classifier
combination is then considered, including simple majority and weighted majority voting.
Finally, a method of combining the ensemble of classifiers, each learned using a different
subset of a disjoint partition, and bagging at the subset level is described.

In all instances, the ensemble of classifiers are composed of decision trees. C4.5 release 8
[17] is used to learn a decision tree on each partition of training data.

3.1 Random Disjoint Partitions

One of the simplest data partitioning approaches is to separate the dataset into n random
subsets. The partitioning is done without respect to the class distribution within the dataset.
Each disjoint subset is independently used in the generation of a decision tree classifier and
the classifier predictions are combined using a simple majority vote. This approach is well
suited to distributed learning, since the entire dataset is never required to be loaded in
memory at one time. Examples can be randomly chosen and distributed across a set of
Processors.

The number of subsets (n) is the only parameter required for this algorithm. Larger
numbers of subsets with moderate sized datasets will almost certainly lead to data starvation,



thereby limiting the amount of learning possible from a subset and, also the ensemble. An
algorithmic method of selecting n could be considered by identifying the number of processors
in hand, the memory limitations of each processor and giving each processor enough data to
fit in its memory; however, this is more applicable to extremely large datasets.

3.2 Stratified Random Disjoint Partitions

One obvious difficulty with random disjoint partitions is that the class distributions are not
necessarily maintained across subsets. Some subsets may not even contain instances of a
particular class, skewing the learned classifiers for that subsets. Therefore, we considered
a stratified random disjoint partition approach in which each subset contains examples ac-
cording to the dataset class distribution. The within-class choices are still random, however
we preserve the class characteristics of the original data. For example, if the original dataset
had two classes with a 2:1 ratio, then the same ratio of 2:1 is maintained in each of the
subsets. Each subset is used in classifier generation and classifier predictions are combined
using a simple majority vote.

Since the partitioned subsets are stratified, class distributions must be maintained. Thus,
this approach requires an initial pass over the dataset to calculate class frequencies. Although
it is a single-pass, sequential operation, for very large datasets the approach may not be
suitable.

3.3 Clustering to create Partitions

Fuzzy c-means clustering is used to examine the effects of intelligent partitioning of a dataset.
A cluster-splitting FCM algorithm is applied to the dataset in order to create meaningful
partitions of the data. Several issues arise from the use of FCM, including the determination
of an appropriate number of clusters (subsets) and the computational cost of FCM.

The algorithm begins with ¢ = 2 and clusters until the membership values are stable.
The validity of the partition is evaluated using the Xie-Beni partition validity metric [18].
Assuming the stopping conditions (described later) are not met, a cluster is selected to be
split. The “worst” cluster, as measured by a cluster validity metric, is split into two distinct
clusters (see [2] for more details).

Since the number of clusters is not known, values of ¢ from 2 to 25 were tried by using the
cluster splitting process above to increase the number of clusters. This process is terminated
early if the partition validity after clustering is worse than 5 times the best partition validity.
This number was empirically observed to prune the search well, since a bad cluster split could
almost never be improved by successive splits. Once the algorithm finishes clustering, the
FCM step is repeated a final time with the best ¢ found. FCM produces a membership matrix,
representing the membership of each example in each cluster. A maximum membership
function is applied to assign each example to a single cluster (i.e. hardening the fuzzy
clusters), thereby maintaining the disjoint partition aspect of the algorithm.



Clustering is often a computationally intensive approach to partitioning a dataset. Some
approaches to clustering require examining all pair-wise distances between examples. This
paper addresses the use of partitioning in large datasets, therefore computational complex-
ity is of crucial concern. Hard c-means clustering[12] requires less memory and processing
requirements vs. FCM. Rather than store an entire membership vector for each dataset ex-
ample, HCM can simply store a pointer to the cluster to which an example currently belongs.
Additionally, fuzzy clustering provides the ability for every example to contribute to every
cluster centroid (to various degrees). Thus, the amount of processing required per cluster is
larger in FCM. Although the partitions created by HCM and FCM are generally different
given the same intializations, they are overall similar in results.

3.4 Bagging

Bagging is another method of partitioning a dataset, however the partitions created are
not disjoint. In our bagging approach, n bags (approaches) are created by sampling (with
replacement) until a bag of P% (P=80 here) of the dataset is obtained. Each bagged train
set is independently used to generate a classifier and classifier predictions are combined using
a simple majority vote. This approach requires more computational overhead than random
partitioning. In bagging, we create 50 different subset samples of the dataset — this requires
accessing the entire dataset many more times than a simple one-pass random partition.

3.5 Classifier Combination

Once the dataset is partitioned and individual classifiers are trained on the partitions, we
must consider methods of combining the classification output. Given a number of inde-
pendently learned decision trees, we must combine their knowledge effectively. In the case
of random partitions and bagging, a simple majority vote is reasonable [4, 11] and, as we
will show, effective. More intelligent methods of classifier combination are possible using
clustering: ask-expert voting and fuzzy voting.

The ask-expert method of voting is analagous to the mixture of experts approach de-
scribed earlier. The cluster centroids created during the clustering process are stored. When
a test example is presented to the ensemble of classifiers, the distance between each cluster
centroid and a test example is found. The cluster corresponding to the closest cluster cen-
troid is the region of example space in which the test example exists. Recall that the data
of this cluster was “learned” by a single decision tree. We use only this decision tree, which
is the “expert” on classifying instances in this region of example space.

Fuzzy voting is another intelligent technique for classifier combination. Recall that fuzzy
clustering generates membership values for an example in all of the clusters. Given a test
example, it’s membership values can be calculated using the cluster centroids. These mem-
bership values can then be used to weight each classifier’s output. Thus, the ensemble
classification is a weighted (by fuzzy membership) combination of individual classifiers.



3.6 Bagging Ensembles of Classifiers

Once a dataset is partitioned, each cluster or disjoint subset represents a distinct training set.
Thus, we could employ bagging as a method of improving individual classifier performance for
a given subset. In particular, bagging of random partitioned subsets vs. bagging of clusters
from clustered partitions may yield some insights into the phenomenon of bagging. Clustering
generates localized classifiers, or classifiers able to accurately classify only a localized region
of example space. Therefore, bagging in this context generates localized random samples.
Can localized random views (i.e. localized bagging) of the data affect classifier performance
similar to traditional bagging?

We investigate localized bagging by sampling the generated partitions at 80% of the
partition size. Fifty bags are used per subset, generating a significant amount of diversity
across bags. Voting within each bagged subset was done via simple majority among the 50
created bags. This approach was used with both clustering and random-partition classifier
ensembles. For example, consider a dataset D of 200 items. When the dataset is randomly
partitioned with n = 2, each subset D; consists of 100 randomly chosen examples. Each
100-member subset D; is then sampled (with replacement) 50 times. Each bag D? consists
of 80 sampled elements of subset D;. All 50 bags D? classify an unseen example and a
majority decision is reached for subset D;. Then a vote is taken among subsets D;, and a
final decision is made.

4 Experiments

We evaluate the proposed approaches to learning by experiments on 9 well-known machine
learning datasets. See Table 1 for dataset details. In all experiments, 10-fold cross validation
is used. Results are reported as the mean classification performance over the 10 folds. The
number of clusters found by FCM was taken as the number of random partitions (stratified
and random-disjoint) to create. Comparisons between methods is done via a two-tailed paired
two sample for means t-test among fold results, setting the confidence level, o = 0.025.

4.1 Voting Methods in Cluster Partitioning

Two methods of classifier voting when using FCM partitioning were discussed in the previous
section. It was expected that the use of more information, in the form of fuzzy voting, would
be a useful performance improvement. However, as can be seen in Table 2, the voting
method did not affect the overall classification rate. Further investigation indicates that
the clustering process often resulted in very crisp partitions. When the partitions are crisp,
fuzzy voting is essentially the ask-expert method. Virtually all of the non-zero membership
value is from the closest cluster. These results indicate that the simpler ask-expert method
is as effective as fuzzy voting. In addition, this method requires only a single classifier (i.e.
the expert) to classify the text example. Therefore, further experiments use the ask-expert



Number of | Number of
Dataset Source Size Features Classes
Iris UCI 150 4 3
Pima Indian Diabetes | UCI 768 8 2
Page-block UCI 5473 10 5
Phoneme Elena 5,404 ) 2
Satimage UCI 6,435 35 6
Pendigits UCI 10,992 16 10
Mammography Local-USF | 11,183 6 2
Letter UCI 20,000 16 26
Shuttle UCI 43,500 9 7

Table 1: Datasets used, with size and number of classes

method of voting.

4.2 Ensembles of Classifiers

The results of training and testing ensembles of classifiers according to the several partition-
ing methods described above can be seen in Table 2. In all datasets except Letter, there was
no statistical significance between the clustering method and a C4.5 decision tree learned
from the entire dataset. However, random partitioning performed statistically worse than
C4.5 (single decision tree from the entire dataset) in 4 of the 9 datasets.

An interesting result that can be seen from Table 2 is that the stratified and random
disjoint partitions perform very similar. In all but the letter dataset, the random disjoint
ensemble was slightly better. This surprising result indicates that carefully preserving class
distributions in partitions is not always necessary. Random partitioning avoids a pass over
the dataset to collect class frequencies and can result in much faster data partitioning. As a
result, further experiments did not consider the more expensive stratified disjoint partitioning
strategy.

4.3 Bagging

The next phase of experiments was to investigate the bagging phenomenon within our en-
sembles of classifiers. The resulting clusters and partitions from Table 2 were bagged using
the algorithm described in the previous section. As can be seen from Table 3, bagging gen-
erally improves the overall performance vs. C4.5 applied to the entire dataset. This is a
surprising result, since increased partition performance does not necessarily imply overall
increased performance. Most significantly, a random partition of a dataset, when combined
with bagging performs better than a single decision tree learning the entire dataset. We



Number of FCM FCM

Partitions/ Full | Stratified | Random Cluster Cluster
Dataset Clusters C4.5 | Disjoint | Disjoint || Ask-Expert | Fuzzy Voting
Iris 3 95.30 94.00 94.00 94.00 94.00
Pima 2 73.90 72.52 74.21 73.82 73.82
Page-block 2 96.90 96.90 96.82 96.95 96.95
Phoneme 5| 86.50+ 82.68 83.44 85.99 86.01
Satimage 9 86.30 87.61 | 87.44+ 86.01 86.01
Pendigits 41 96.57+ 96.15 96.06 96.42 96.49
Mammography 2 98.50 98.43 98.51 98.40 98.40
Letter 2 | 88.10%+ 83.52 83.54 86.08 86.22
Shuttle 31 99.96+ 99.92 99.92 99.95 99.95

Table 2: Partitioning Results vs. C4.5. The '+’ represents C4.5-Random statistically signif-

icant winner. The *’ represents C4.5-Cluster statistically significant winner.

also tried 50 bags of 100% size with Iris and Pima, due to the much smaller size. We found
that average accuracy over 10 folds for Iris increased to 95.3%; there was no improvement
observed with Pima. To be consistent, we maintained 80% bag sizes with all the datasets,
as for very large datasets it may not be possible to bag at 100% or more.

5 Conclusion

In this paper, we present a novel approach to distributed learning using clustering. This
intelligent method of partitioning a dataset is compared to simpler, random methods of
partitioning. In general, intelligent partitioning of a dataset provides better performance
than random partitioning, and generally performs as well as C4.5 over the entire dataset.
The results presented in this paper suggest that for very large datasets, the creation of
ensembles of classifiers can perform reasonably well. Note that for some of these datasets
partitioning causes a learning algorithm to be data starved for one or more classes; with train
datasets that do not fit in memory this effect would likely not be observed. This is important
for extremely large datasets that cannot be learned by a single classifier; distributed learning
can be used in these instances. Ideally, we would like to look at generating n partitions a
dataset using HCM or random selection, and chart out the performance. However, due to
space limitations, we have not included that set of experiments in this paper.

Interestingly, our results indicate that bagging of individual partitions can yield better
results than learning from the entire dataset. It is surprising as bagging, in effect, sees
much less data due to bagging of smaller sized data subsets. Even in the case of random
partitioning, where any individual classifier created on a subset often performs significantly



Random-Disjoint Cluster
Dataset C4.5 | Bagging 50 bags Bag 50 bags | Bag 50 bags
Iris 95.30 94.67 94.00 93.33
Pima 73.90 76.30 75.78 77.34
Page-block 96.90 97.55 97.11 97.26*
Phoneme 86.50 89.15 85.77 88.71%*
Satimage 86.30 90.89 87.61+ 86.76
Pendigits 96.57 98.42 97.22+ 08.18%*
Mammography 98.50 98.76 98.52 08.78%*
Letter 88.10 93.54 90.82+ 93.01*
Shuttle 99.96*+ 99.94 99.89 99.93

Table 3: Bagging Results. The '+’ represents C4.5-Random statistically significant winner.

The "* represents C4.5-Cluster statistically significant winner.

worse than a single classifier learned on the entire dataset, bagging of disjoint subsets can
improve performance. We believe this is due to the same effects that cause bagging to improve
performance in general - bagging produces diverse classifiers from the data partitions, despite
the smaller number of examples within a partition. We have thus proposed a novel and
effective three-stage learning technique - partition, bag each partitioned subset, and learn.
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